Serveur d'exploration sur la détoxication des champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation.

Identifieur interne : 002315 ( Main/Exploration ); précédent : 002314; suivant : 002316

Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation.

Auteurs : Aurora Zuzuarregui [Espagne] ; Lucía Monteoliva ; Concha Gil ; Marcel Lí Del Olmo

Source :

RBID : pubmed:16391125

Descripteurs français

English descriptors

Abstract

Throughout alcoholic fermentation, Saccharomyces cerevisiae cells have to cope with several stress conditions that could affect their growth and viability. In addition, the metabolic activity of yeast cells during this process leads to the production of secondary compounds that contribute to the organoleptic properties of the resulting wine. Commercial strains have been selected during the last decades for inoculation into the must to carry out the alcoholic fermentation on the basis of physiological traits, but little is known about the molecular basis of the fermentative behavior of these strains. In this work, we present the first transcriptomic and proteomic comparison between two commercial strains with different fermentative behaviors. Our results indicate that some physiological differences between the fermentative behaviors of these two strains could be related to differences in the mRNA and protein profiles. In this sense, at the level of gene expression, we have found differences related to carbohydrate metabolism, nitrogen catabolite repression, and response to stimuli, among other factors. In addition, we have detected a relative increase in the abundance of proteins involved in stress responses (the heat shock protein Hsp26p, for instance) and in fermentation (in particular, the major cytosolic aldehyde dehydrogenase Ald6p) in the strain with better behavior during vinification. Moreover, in the case of the other strain, higher levels of enzymes required for sulfur metabolism (Cys4p, Hom6p, and Met22p) are observed, which could be related to the production of particular organoleptic compounds or to detoxification processes.

DOI: 10.1128/AEM.72.1.836-847.2006
PubMed: 16391125
PubMed Central: PMC1352203


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation.</title>
<author>
<name sortKey="Zuzuarregui, Aurora" sort="Zuzuarregui, Aurora" uniqKey="Zuzuarregui A" first="Aurora" last="Zuzuarregui">Aurora Zuzuarregui</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, Dr. Moliner, 50, E-46100 Burjassot (Valencia), Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, Dr. Moliner, 50, E-46100 Burjassot (Valencia)</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté valencienne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Monteoliva, Lucia" sort="Monteoliva, Lucia" uniqKey="Monteoliva L" first="Lucía" last="Monteoliva">Lucía Monteoliva</name>
</author>
<author>
<name sortKey="Gil, Concha" sort="Gil, Concha" uniqKey="Gil C" first="Concha" last="Gil">Concha Gil</name>
</author>
<author>
<name sortKey="Del Olmo, Marcel Li" sort="Del Olmo, Marcel Li" uniqKey="Del Olmo M" first="Marcel Lí" last="Del Olmo">Marcel Lí Del Olmo</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2006">2006</date>
<idno type="RBID">pubmed:16391125</idno>
<idno type="pmid">16391125</idno>
<idno type="doi">10.1128/AEM.72.1.836-847.2006</idno>
<idno type="pmc">PMC1352203</idno>
<idno type="wicri:Area/Main/Corpus">002429</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002429</idno>
<idno type="wicri:Area/Main/Curation">002429</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002429</idno>
<idno type="wicri:Area/Main/Exploration">002429</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation.</title>
<author>
<name sortKey="Zuzuarregui, Aurora" sort="Zuzuarregui, Aurora" uniqKey="Zuzuarregui A" first="Aurora" last="Zuzuarregui">Aurora Zuzuarregui</name>
<affiliation wicri:level="2">
<nlm:affiliation>Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, Dr. Moliner, 50, E-46100 Burjassot (Valencia), Spain.</nlm:affiliation>
<country xml:lang="fr">Espagne</country>
<wicri:regionArea>Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, Dr. Moliner, 50, E-46100 Burjassot (Valencia)</wicri:regionArea>
<placeName>
<region nuts="2" type="communauté">Communauté valencienne</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Monteoliva, Lucia" sort="Monteoliva, Lucia" uniqKey="Monteoliva L" first="Lucía" last="Monteoliva">Lucía Monteoliva</name>
</author>
<author>
<name sortKey="Gil, Concha" sort="Gil, Concha" uniqKey="Gil C" first="Concha" last="Gil">Concha Gil</name>
</author>
<author>
<name sortKey="Del Olmo, Marcel Li" sort="Del Olmo, Marcel Li" uniqKey="Del Olmo M" first="Marcel Lí" last="Del Olmo">Marcel Lí Del Olmo</name>
</author>
</analytic>
<series>
<title level="j">Applied and environmental microbiology</title>
<idno type="ISSN">0099-2240</idno>
<imprint>
<date when="2006" type="published">2006</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Adaptation, Physiological (MeSH)</term>
<term>Fermentation (MeSH)</term>
<term>Gene Expression Profiling (MeSH)</term>
<term>Gene Expression Regulation, Fungal (MeSH)</term>
<term>Heat-Shock Response (MeSH)</term>
<term>Proteome (MeSH)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae (growth & development)</term>
<term>Saccharomyces cerevisiae (metabolism)</term>
<term>Saccharomyces cerevisiae (physiology)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Transcription, Genetic (MeSH)</term>
<term>Wine (microbiology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Adaptation physiologique (MeSH)</term>
<term>Analyse de profil d'expression de gènes (MeSH)</term>
<term>Fermentation (MeSH)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéome (MeSH)</term>
<term>Réaction de choc thermique (MeSH)</term>
<term>Régulation de l'expression des gènes fongiques (MeSH)</term>
<term>Saccharomyces cerevisiae (croissance et développement)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
<term>Saccharomyces cerevisiae (métabolisme)</term>
<term>Saccharomyces cerevisiae (physiologie)</term>
<term>Transcription génétique (MeSH)</term>
<term>Vin (microbiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Proteome</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Vin</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Wine</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Adaptation, Physiological</term>
<term>Fermentation</term>
<term>Gene Expression Profiling</term>
<term>Gene Expression Regulation, Fungal</term>
<term>Heat-Shock Response</term>
<term>Transcription, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Adaptation physiologique</term>
<term>Analyse de profil d'expression de gènes</term>
<term>Fermentation</term>
<term>Protéome</term>
<term>Réaction de choc thermique</term>
<term>Régulation de l'expression des gènes fongiques</term>
<term>Transcription génétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Throughout alcoholic fermentation, Saccharomyces cerevisiae cells have to cope with several stress conditions that could affect their growth and viability. In addition, the metabolic activity of yeast cells during this process leads to the production of secondary compounds that contribute to the organoleptic properties of the resulting wine. Commercial strains have been selected during the last decades for inoculation into the must to carry out the alcoholic fermentation on the basis of physiological traits, but little is known about the molecular basis of the fermentative behavior of these strains. In this work, we present the first transcriptomic and proteomic comparison between two commercial strains with different fermentative behaviors. Our results indicate that some physiological differences between the fermentative behaviors of these two strains could be related to differences in the mRNA and protein profiles. In this sense, at the level of gene expression, we have found differences related to carbohydrate metabolism, nitrogen catabolite repression, and response to stimuli, among other factors. In addition, we have detected a relative increase in the abundance of proteins involved in stress responses (the heat shock protein Hsp26p, for instance) and in fermentation (in particular, the major cytosolic aldehyde dehydrogenase Ald6p) in the strain with better behavior during vinification. Moreover, in the case of the other strain, higher levels of enzymes required for sulfur metabolism (Cys4p, Hom6p, and Met22p) are observed, which could be related to the production of particular organoleptic compounds or to detoxification processes.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">16391125</PMID>
<DateCompleted>
<Year>2006</Year>
<Month>03</Month>
<Day>01</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0099-2240</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>72</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2006</Year>
<Month>Jan</Month>
</PubDate>
</JournalIssue>
<Title>Applied and environmental microbiology</Title>
<ISOAbbreviation>Appl Environ Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation.</ArticleTitle>
<Pagination>
<MedlinePgn>836-47</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Throughout alcoholic fermentation, Saccharomyces cerevisiae cells have to cope with several stress conditions that could affect their growth and viability. In addition, the metabolic activity of yeast cells during this process leads to the production of secondary compounds that contribute to the organoleptic properties of the resulting wine. Commercial strains have been selected during the last decades for inoculation into the must to carry out the alcoholic fermentation on the basis of physiological traits, but little is known about the molecular basis of the fermentative behavior of these strains. In this work, we present the first transcriptomic and proteomic comparison between two commercial strains with different fermentative behaviors. Our results indicate that some physiological differences between the fermentative behaviors of these two strains could be related to differences in the mRNA and protein profiles. In this sense, at the level of gene expression, we have found differences related to carbohydrate metabolism, nitrogen catabolite repression, and response to stimuli, among other factors. In addition, we have detected a relative increase in the abundance of proteins involved in stress responses (the heat shock protein Hsp26p, for instance) and in fermentation (in particular, the major cytosolic aldehyde dehydrogenase Ald6p) in the strain with better behavior during vinification. Moreover, in the case of the other strain, higher levels of enzymes required for sulfur metabolism (Cys4p, Hom6p, and Met22p) are observed, which could be related to the production of particular organoleptic compounds or to detoxification processes.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zuzuarregui</LastName>
<ForeName>Aurora</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>Departament de Bioquímica i Biologia Molecular, Facultat de Ciències Biològiques, Universitat de València, Dr. Moliner, 50, E-46100 Burjassot (Valencia), Spain.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Monteoliva</LastName>
<ForeName>Lucía</ForeName>
<Initials>L</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Gil</LastName>
<ForeName>Concha</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>del Olmo</LastName>
<ForeName>Marcel lí</ForeName>
<Initials>Ml</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Appl Environ Microbiol</MedlineTA>
<NlmUniqueID>7605801</NlmUniqueID>
<ISSNLinking>0099-2240</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020543">Proteome</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000222" MajorTopicYN="Y">Adaptation, Physiological</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005285" MajorTopicYN="N">Fermentation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020869" MajorTopicYN="N">Gene Expression Profiling</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015966" MajorTopicYN="Y">Gene Expression Regulation, Fungal</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018869" MajorTopicYN="N">Heat-Shock Response</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020543" MajorTopicYN="Y">Proteome</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014158" MajorTopicYN="Y">Transcription, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014920" MajorTopicYN="N">Wine</DescriptorName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2006</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2006</Year>
<Month>3</Month>
<Day>2</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2006</Year>
<Month>1</Month>
<Day>5</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">16391125</ArticleId>
<ArticleId IdType="pii">72/1/836</ArticleId>
<ArticleId IdType="doi">10.1128/AEM.72.1.836-847.2006</ArticleId>
<ArticleId IdType="pmc">PMC1352203</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>EMBO J. 1999 Nov 1;18(21):6155-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10545125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2005 Apr 15;22(5):369-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15806604</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2000 Jan 30;16(2):139-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10641036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Appl Microbiol. 2000 Jun;23(2):300-3</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10930084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Microbiol Rev. 2000 Oct;24(4):469-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10978547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Oct 20;275(42):32611-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10921921</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2001 Mar 16;276(11):8469-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11078740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Res Microbiol. 2001 Apr-May;152(3-4):375-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11421285</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2001 Oct;21(19):6450-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11533234</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2001 Nov;18(15):1413-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11746603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2002 Mar;20(3):301-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11875433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Appl Microbiol. 2002 Apr;25(1):153-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12086182</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2002 Sep 6;277(36):32466-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12077145</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2003 Jan;69(1):113-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12513985</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2003 Feb 15;370(Pt 1):35-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12401115</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2003 May;3(3):269-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12689635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2001 Jul;1(2):111-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12702356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2003 Sep;149(Pt 9):2669-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12949191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2003 Dec;20(16):1369-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14663829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteomics. 2004 Feb;4(2):374-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14760707</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Antonie Van Leeuwenhoek. 2004 May;85(4):271-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15028866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genome Biol. 2004;5(4):R26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15059259</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2004 Apr;70(4):1913-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15066780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2004 May;4(7):699-710</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15093773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2004 Jun 1;567(1):80-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15165897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1983 Jul 15;132(2):418-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6354001</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1988 Dec 25;263(36):19468-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2848829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1988 Dec 15;178(2):451-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2850178</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1989 Jul;8(7):2067-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2551674</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1990 Apr;172(4):1923-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2180911</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1990 Dec;10(12):6362-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2123293</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1992 Oct 5;267(28):20270-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1339437</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1993 May;175(10):3192-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8491733</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1993 May;18(5):172-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8392229</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 1994 Nov;140 ( Pt 11):3031-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7812443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Chem. 1996 Mar 1;68(5):850-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8779443</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Folia Microbiol (Praha). 1995;40(5):508-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8763146</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 1997 Aug;13(10):903-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9271106</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Electrophoresis. 1997 Aug;18(8):1429-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9298657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiol Mol Biol Rev. 1997 Dec;61(4):503-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9409150</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1997 Dec;15(13):1351-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9415886</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1998 Feb;180(4):822-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9473035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1998 Aug 28;273(35):22480-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9712873</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Syst Appl Microbiol. 1999 Feb;22(1):145-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10188286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Appl Microbiol. 1999 Jun;86(6):1047-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10389252</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Yeast Res. 2004 Dec;5(3):213-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15556083</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 Dec 1;18(23):6744-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10581247</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Espagne</li>
</country>
<region>
<li>Communauté valencienne</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Del Olmo, Marcel Li" sort="Del Olmo, Marcel Li" uniqKey="Del Olmo M" first="Marcel Lí" last="Del Olmo">Marcel Lí Del Olmo</name>
<name sortKey="Gil, Concha" sort="Gil, Concha" uniqKey="Gil C" first="Concha" last="Gil">Concha Gil</name>
<name sortKey="Monteoliva, Lucia" sort="Monteoliva, Lucia" uniqKey="Monteoliva L" first="Lucía" last="Monteoliva">Lucía Monteoliva</name>
</noCountry>
<country name="Espagne">
<region name="Communauté valencienne">
<name sortKey="Zuzuarregui, Aurora" sort="Zuzuarregui, Aurora" uniqKey="Zuzuarregui A" first="Aurora" last="Zuzuarregui">Aurora Zuzuarregui</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/DetoxFungiV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002315 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002315 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    DetoxFungiV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:16391125
   |texte=   Transcriptomic and proteomic approach for understanding the molecular basis of adaptation of Saccharomyces cerevisiae to wine fermentation.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:16391125" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a DetoxFungiV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 16:09:04 2020. Site generation: Fri Nov 20 16:15:24 2020